Hydrophobic forces and hydrogen bonds in the adhesion between retinoid-coated surfaces.
نویسندگان
چکیده
Interactions between hydrophobic chains of lipid monolayers and interactions between hydrophilic headgroups of lipid bilayers (with or without a molecular recognition step) are now well documented, especially for commonly used lipids. Here, we report force measurements between a new class of fluorinated lipid layers whose headgroups (synthetic ligands of retinoid receptors) display a very unusual polar/apolar character and can interact via a combination of hydrophobic forces and hydrogen bonds. Although these two interactions produce adhesion and are therefore not easily distinguishable, we show that it is possible to extract both contributions unambiguously. Experiments are performed both in pure water, where the adhesion is a combination of hydrophobic forces and hydrogen bonds, and in Tris buffer, where the hydrophobic effect is the dominant short-range attractive force. The contribution of hydrophobic forces scaled down to molecular interactions is deduced from force versus distance profiles, and the same value is found independently in pure water and Tris buffer, about 1 kBT. We also show that retinoid lipid layers attract each other through a very long-range (100 nm) exponential force, which is insensitive to the pH and the salinity. The origin of this long-range attraction is discussed on the basis of previously proposed mechanisms.
منابع مشابه
Residence time, loading force, pH, and ionic strength affect adhesion forces between colloids and biopolymer-coated surfaces.
Exopolymers are thought to influence bacterial adhesion to surfaces, but the time-dependent nature of molecular-scale interactions of biopolymers with a surface are poorly understood. In this study, the adhesion forces between two proteins and a polysaccharide [Bovine serum albumin (BSA), lysozyme, or dextran] and colloids (uncoated or BSA-coated carboxylated latex microspheres) were analyzed u...
متن کاملExamining the frictional forces between mixed hydrophobic-hydrophilic alkylsilane monolayers.
Monolayers presenting methyl-terminated (hydrophobic) and hydroxyl-terminated (hydrophilic) surfaces on silica have been studied by molecular dynamics simulation and the effects of hydrogen bonding, chain length, and chain mixing on the frictional properties determined. The hydroxyl-terminated monolayers were found to show large adhesion zones as a result of strong interfacial interlayer hydrog...
متن کاملAtomic scale study of superlow friction between hydrogenated diamond surfaces
Strong attractive interaction between two clean diamond (001) slabs turns repulsive upon the hydrogenation of surfaces. This repulsive interaction serves as if a boundary lubricant and prevents the sliding surfaces from being closer to each other even under high normal forces. As a result, calculated lateral force variation generated during sliding has small magnitude under high constant loadin...
متن کاملInteraction forces measured using AFM between colloids and surfaces coated with both dextran and protein.
Both proteins and polysaccharides are biopolymers present on a bacterial surface that can simultaneously affect bacterial adhesion. To better understand how the combined presence of proteins and polysaccharides might influence bacterial attachment, adhesion forces were examined using atomic force microscopy (AFM) between colloids (COOH- or protein-coated) and polymer-coated surfaces (BSA, lysoz...
متن کاملInteraction forces between colloids and protein-coated surfaces measured using an atomic force microscope.
Bacterial surfaces contain proteins, polysaccharides, and other biopolymers that can affect their adhesion to another surface. To better understand the role of proteins in bacterial adhesion, the interactions between two different model colloids (glass beads and carboxylated latex microspheres) and four proteins covalently bonded to glass surfaces were examined using colloid probes and an atomi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 23 6 شماره
صفحات -
تاریخ انتشار 2007